Gain-enhanced high-k transmission through metal-semiconductor hyperbolic metamaterials
نویسندگان
چکیده
We analyze the steady-state transmission of high-momentum (high-k) electromagnetic waves through metal-semiconductor multilayer systems with loss and gain in the near-infrared (NIR). Using a semiclassical optical gain model in conjunction with the scattering matrix method (SMM), we study indium gallium arsenide phosphide (InGaAsP) quantum wells as the active semiconductor, in combination with the metals, aluminum-doped zinc oxide (AZO) and silver (Ag). Under moderate external pumping levels, we find that NIR transmission through Ag/InGaAsP systems may be enhanced by several orders of magnitude relative to the unpumped case, over a large angular and frequency bandwidth. Conversely, transmission enhancement through AZO/InGaAsP systems is orders of magnitude smaller, and has a strong frequency dependence. We discuss the relative importance of Purcell enhancement on our results and validate analytical calculations based on the SMM with numerical finite-difference time domain simulations. © 2015 Optical Society of America OCIS codes: (160.3918) Metamaterials; (160.4236) Nanomaterials; (310.6628) Subwavelength structures, nanostructures; (350.4238) Nanophotonics and photonic crystals; (160.3900) Metals. References and links 1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer Verlag, 1988). 2. J. Schilling, “Uniaxial metallo-dielectric metamaterials with scalar positive permeability,” Phys. Rev. E 74, 046618 (2006). 3. I. Avrutsky, I. Salakhutdinov, J. Elser, and V. Podolskiy, “Highly confined optical modes in nanoscale metaldielectric multilayers,” Phys. Rev. B 75, 241402 (2007). 4. S. Zhukovsky, O. Kidwai, and J. Sipe, “Physical nature of volume plasmon polaritons in hyperbolic metamaterials,” Opt. Express 21, 14982–14987 (2013). 5. B. Wood, J. Pendry, and D. Tsai, “Directed sub-wavelength imaging using a layered metal-dielectric system,” Phys. Rev. B 74, 115116 (2006). 6. Z. Jacob, L. Alekseyev, and E. Nariminov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006). 7. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit, Nature Materials 7, 435–441 (2008). 8. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B: Chemical 54, 3–15 (1999). 9. J. Anker, W. Hall, O. Lyandes, N. Shah, J. Zhao, and R. V. Duyne, “Biosensing with plasmonic nanosensors,” Nature Mat. 7, 442–453 (2008). #247827 Received 17 Aug 2015; revised 16 Sep 2015; accepted 16 Sep 2015; published 23 Sep 2015 © 2015 OSA 1 Oct 2015 | Vol. 5, No. 10 | DOI:10.1364/OME.5.002300 | OPTICAL MATERIALS EXPRESS 2300 10. T. Xu and H. Lezec, “Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial,” Nature Comm. 5, 4141 (2014). 11. C. Duncan, L. Perret, S. Palomba, M. Lapine, B. Kuhlmey, and C. de Sterke, “New avenues for phase matching in nonlinear hyperbolic metamaterials,” Sci. Rep. 5, 8983 (2015). 12. D. Lu, J. Kan, E. Fullerton, and Z. Liu, “Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials,” Nature Nano. 9, 48–53 (2014). 13. K. Sreekanth, K. Krishna, A. D. Luca, and G. Strangi, “Large spontaneous emission rate enhancement in grating coupled hyperbolic metamaterials,” Sci. Rep. 4, 6340 (2014). 14. T. Galfsky, H. Krishnamoorthy, W. Newman, E. Narimanov, Z. Jacob, and V. Menon, “Active hyperbolic metamaterials: enhanced spontaneous emission and light extraction,” Optica 2, 62–65 (2015). 15. W. Barnes, “Surface plasmon-polariton length scales: a route to sub-wavelength optics,” J. Opt. A: Pure Appl. Opt. 8, S87–S93 (2006). 16. S. Maier, Plasmonics: Fundamental and Applications (Springer, 2007). 17. I. D. Leon and P. Berini, “Amplification and lasing with surface plasmon-polaritons,” in Plasmonics and Plasmonic Metamaterials, (World Scientific, 2012), pp. 101–122. 18. M. Noginov, “Metamaterials with optical gain,” in Tutuorials in Metamaterials, (CRC, 2012), pp. 129–161. 19. S. A. Ramakrishna and J. B. Pendry, “Removal of absorption and increase in resolution in a near-field lens via optical gain,” Phys. Rev. B 67, 201101(R) (2003). 20. X. Ni, S. Ishii, M. Thoreson, V. Shalaev, S. Han, S. Lee, and A. Kildishev, “Loss-compensated and active hyperbolic metamaterials,” Opt Express 19, 25242–25254 (2011). 21. C. Aryropoulos, N. Estakhri, F. Monticone, and A. Alu, “Negative refraction, gain, and nonlinear effects in hyperbolic metamaterials,” Opt. Express 21, 15037–15047 (2013). 22. R. S. Savelev, I. V. Shadrivov, P. A. Belov, N. N. Rosanov, S. V. Fedorov, A. A. Sukhorukov, and Y. S. Kivshar, “Loss compensation in metal-dielectric layered metamaterials,” Phys. Rev. B, 87, 115139 (2013). 23. S. Zhang, W. Fan, N. Panoiu, K. Malloy, R. Osgood, and S. Brueck, “Optical negative-index bulk metamaterials consisting of 2D perforated metal-dielectric stacks,” Opt. Express 14, 6778–6787 (2006). 24. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. Genov, G. Bartal, and X. Zhang, “Three-dimensional optical metamaterial with a negative refractive index,” Nature 455, 376–379 (2008). 25. S. Xiao, V. Drachev, A. Kildishev, X. Ni, U. Chettiar, H. Yuan, and V. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–738 (2010). 26. J. Seidel, S. Grafstrom, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 177401 (2005). 27. I. D. Leon and P. Berini, “Amplification of long-range surface plasmons by a dipolar gain medium,” Nature Photon. 4, 382–387 (2010). 28. J. Khurgin and G. Sun, “Practicality of compensating the loss in the plasmonic waveguides using semiconductor gain medium,” Appl. Phys. Lett. 100, 011105 (2012). 29. M. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12, 4072–4079 (2004). 30. M. Hill, Y. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. van Veldhoven, F. van Otten, T. Eijkemans, J. Turkiewicz, H. de Waardt, E. Geluk, S. Kwon, Y. Lee, R. Notzel, and M. Smit, “Lasing in metallic-coated nanocavities,” Nature Photon. 1, 589–594 (2007). 31. K. Ding, Z. C. Liu, M. T. Hill, M. J. H. Marell, P. J. van Veldoven, R. Noetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85, 041301 (2012). 32. M. Khajavikhan, A. Simic, M. Katz, J. Lee, B. Slutsky, A. Mizrahi, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482, 204–207 (2012). 33. J. S. T. Smalley, F. Vallini, B. Kante, and Y. Fainman, “Modal amplification in active waveguides with hyperbolic dispersion at telecommunication frequencies,” Opt. Express 22, 21088–21105 (2014). 34. F. Krayzel, R. Polles, A. Moreau, M. Mihailovic, and G. Granet, “Simulation and analysis of exotic non-specular phenomena,” J Europ Opt Soc 5, 10025 (2010). 35. G. Naik, J. Liu, A. Kildishev, V. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Nat. Acad. Sci. 1121517109 (2011). 36. G. Naik, V. Shalaev, and A. Boltasseva, “Alternative plasmonic materials: Beyond gold and silver,” Adv. Mat. 25, 3264–3294 (2013). 37. C. Riley, T. Kieu, J. S. T. Smalley, S. Pan, S. Kim, K. Post, A. Kargar, D. Basov, X. Pan, Y. Fainman, D. Wang, and D. Sirbuly, “Plasmonic tuning of aluminum doped zinc oxide nanostructures by atomic layer deposition,” Phys. Stat. Sol. RRL 8, 948–952 (2014). 38. P. Johnson and R. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370 (1972). 39. M. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Roomtemperature subwavelength metallo-dielectric lasers,” Nature Photon. 4, 395–399 (2010). 40. L. Coldren, S. Corzine, and M. Masanovic, “Gain and current relations,” in Diode Lasers and Photonic Integrated Circuits, (Wiley, 2012), pp. 157–246. #247827 Received 17 Aug 2015; revised 16 Sep 2015; accepted 16 Sep 2015; published 23 Sep 2015 © 2015 OSA 1 Oct 2015 | Vol. 5, No. 10 | DOI:10.1364/OME.5.002300 | OPTICAL MATERIALS EXPRESS 2301 41. A. Goldberg Yu and N. Schmidt, Handbook Series on Semiconductor Parameters, Vol. 2, (World Scientific, 1999). 42. R. Nicholas, J. Portal, C. Houlbert, P. Perrier, and T. Pearsall, “An experimental determination of the effective masses for GaxIn1−xAsyP1−y alloys grown on InP,” Appl. Phys. Lett. 34, 492–494 (1979). 43. C. Hermann and C. Weisbuch, Modern Problems in Condensed Matter Sciences, Vol. 8, (North-Holland, 1984). 44. J. S. T. Smalley, Q. Gu, and Y. Fainman, “Temperature dependence of the spontaneous emission factor in subwavelength semiconductor lasers,” IEEE J. Quantum Electron. 50, 175–185 (2014). 45. R. Savelev, I. Shadrivov, and Y. Kivshar, “Wave scattering by metal-dielectric multilayer structures with gain,” J. Exp. Theor. Phys. Lett. 100, 831–836 (2014). 46. D. Y. K. Ko and J. C. Inkson, “Matrix method for tunneling in heterostructures: Resonant tunneling in multilayer systems,” Phys. Rev. B 38, 9945-9951 (1988). 47. D. Y. K. Ko and J. Sambles, “Scattering matrix method for propagation of radiation in stratified media: attenuated total reflection studies of liquid crystals,” J. Opt. Soc. Am. A, 5 1863–1866 (1988). 48. T. Visser and H. Blok, “Modal analysis of a planar waveguide with gain and loss,” IEEE J. Quantum Electron. 31, 1803–1810 (1995). 49. K. Sreekanth, A. De Luca, and G. Strangi, “Experimental demonstration of surface and bulk plasmon polaritons in hypergratings,” Sci. Rep. 3, 3291 (2013). 50. K. Sreekanth, A. De Luca, and G. Strangi, “Excitation of volume plasmon polaritons in metal-dielectric metamaterials using 1D and 2D diffraction gratings,” J. Opt. 16, 105103 (2014). 51. A. Yariv and P. Yeh, “Wave propagation in periodic media,” in Photonics: Optical Electronics in Modern Communications (Oxford, 2007), pp. 539–601. 52. C. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14, 063001 (2012). 53. S. Wuestner, A. Pusch, K. Tsakmakidis, J. Hamm, and O. Hess, “Gain and plasmon dynamics in active negativeindex metamaterials,” Phil. Trans. Royal Soc. A 369, 3525–3550 (2011). 54. G. Slavcheva, J. Arnold, and R. Ziolkowski, “FDTD simulation of the nonlinear gain dynamics in active optical waveguides and semiconductor microcavities,” IEEE. J. Sel. Top. Quantum Electron. 10, 1052–1062 (2004). 55. S. Chang and A. Taflove, “Finite-difference time-domain model of lasing action in a four-level two-electron atomic system,” Opt. Express 12, 3827–3843 (2004). 56. L. Ferrari, D. Lu, D. Lepage, and Z. Liu, “Enhanced spontaneous emission inside hyperbolic metamaterials,” Opt. Express 22, 4301–4306 (2014). 57. A. Orlov, I. Iorsh, P. Belov, and Y. Kivshar, “Complex band structure of nanostructured metal-dielectric metamaterials,” Opt. Express 21, 1593–1598 (2013). 58. S. G. Tikhodeev, A. L. Yablonski, E. A. Muljarov, N. A. Gippius, and T. Ishihara, “Quasiguided modes and optical properties of photonic crystal slabs,” Phys. Rev. B 66, 045102 (2002). 59. N. Cotter, T. Presit, and J. Sambles, “Scattering-matrix approach to multilayer diffraction,” J. Opt. Soc. Am. A 12, 1097–1103 (1995). 60. S. Gedney and B. Zhao, “An auxiliary differential equation formulation for the complex-frequency shifted PML,” IEEE Trans. Antennas Propag. 58, 838–847 (2010). 61. H. Hagenvik, “FDTD simulations of novel gain media,” Thesis, Norwegian University of Science and Technology (2014).
منابع مشابه
Physical nature of volume plasmon polaritons in hyperbolic metamaterials.
We investigate electromagnetic wave propagation in multilayered metal-dielectric hyperbolic metamaterials (HMMs). We demonstrate that high-k propagating waves in HMMs are volume plasmon polaritons. The volume plasmon polariton band is formed by coupling of short-range surface plasmon polariton excitations in the individual metal layers.
متن کاملChannel thickness dependency of high-k gate dielectric based double-gate CMOS inverter
This work investigates the channel thickness dependency of high-k gate dielectric-based complementary metal-oxide-semiconductor (CMOS) inverter circuit built using a conventional double-gate metal gate oxide semiconductor field-effect transistor (DG-MOSFET). It is espied that the use of high-k dielectric as a gate oxide in n/p DG-MOSFET based CMOS inverter results in a high noise margin as well...
متن کاملOptical field enhancement in nanoscale slot waveguides of hyperbolic metamaterials.
Nanoscale slot waveguides of hyperbolic metamaterials are proposed and demonstrated for achieving large optical field enhancement. The dependence of the enhanced electric field within the air slot on waveguide mode coupling and permittivity tensors of hyperbolic metamaterials is analyzed both numerically and analytically. Optical intensity in the metamaterial slot waveguide can be more than 25 ...
متن کاملHyperbolic metamaterials based on quantum-dot plasmon-resonator nanocomposites.
We theoretically demonstrate that nanocomposites made of colloidal semiconductor quantum dot monolayers placed between metal nanoparticle monolayers can function as multilayer hyperbolic metamaterials. Depending on the thickness of the spacer between the quantum dot and nanoparticle layers, the effective permittivity tensor of the nanocomposite is shown to become indefinite, resulting in increa...
متن کاملEnhanced Optical Transmission through MacEtch-Fabricated Buried Metal Gratings.
Metallic films with subwavelength apertures, integrated into a semiconductor by metal-assisted chemical etch (MacEtch), demonstrate enhanced transmission when compared to bare semiconductor surfaces. The resulting "buried" metallic structures are characterized spectroscopically and modeled using rigorous coupled wave analysis. These composite materials offer potential integration with optoelect...
متن کامل